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An expression is obtained for calculation of the diffusion coefficient of rare- 
fied gases in microcapillaries with consideration of the action of the surface 

force field. 

On the basis of the molecular-statistical approach, it has been proposed [i] that the 

diffusion coefficient for a rarefied gas (i.e., a gas whose particles do not interact with 
each other) within a microcapillary and the adsorption field of the capillary wails can be 
defined as the mean square of the gas molecule displacement 0(T) over an interval ~: 

where 

D ~ ('r!/*, (i) 

I I 

2 '2 ' ' 

where r(t) is the displacement of a molecule over time t. The values in angle brackets 
indicate averages over time. Using the ergodic hypothesis, in the future we will calculate 
mean values where required by the Gibbs method. 

The essence of the molecular-statistical approach is that the macroscopic characteris- 
tics of the system can be related to mean values of quantities related to individual mole- 
cules. Thus, for example, temperature T is defined as the mean energy of molecular motion, 
nl<V~>/2=3kT/2 We will use such an approach to study diffusion of a rarefied gas in an 
infinite microcapillary, which for definiteness we will assume cylindrical with radius r c 

(Fig. i). 

We will turn to consideration of the microscopic pattern of gas molecule motion. Being 
located in the vicinity of atoms within the lattice of the capillary wall, which perform 
thermal oscillations about their equilibrium positions, the gas molecule exchanges energy 
with the wall atoms, which establishes an equilibrium Maxwell, distribution over velocities. 
The kinetic energy of a gas molecule is equal to m<u2>/2 In the absence of capillary walls, 
the molecular motion is chaotic, i.e., equiprobable in all directions, but the field of the 
surface forces changes the character of the motion. The interaction of each gas molecule 
with each molecule of the capillary wall, the two being separated by a distance r, may be 
specified, for example, by a (6-12) Lennard-Jones pair potential with parameters E, o: 

The p o t e n t i a l  f i e l d  w i t h i n  t h e  c a p i l l a r y  U can  t h e n  be o b t a i n e d  by i n t e g r a t i n g  a i r  i n t e r a c -  
t i o n s  u ( r )  o v e r  a l l  c a p i l l a r y  w a i l  a t o m s .  In  v i ew of  t he  f a c t  t h a t  t he  c a p i l l a r y  i s  i n -  
f i n i t e  and c y l i n d r i c a l  syn~-netry w i l l  be. in  e f f e c t ,  t he  p o t e n t i a l  U(R) ,  and t h u s ,  t h e  f o r c e  
F(R) . . . . .  grad U(R) w i l l  be  f u n c t i o n s  of  t h e  s i n g l e  v a r i a b l e  R, t h e  d i s t a n c e  o f  t h e  gas  m o l e -  
c u l e  f rom t h e  c a p i l l a r y  a x i s .  The form of  the  p o t e n t i a l  U(R) f o r  t h e  s y s t e m  s t u d i e d  was 
o b t a i n e d  i n  t h e  a p p r o x i m a t i o n  o f  t he  c a p i l l a r y  w a l i s  b e i n g  a c o n t i n u o u s  medium in  [ 2 ] .  In  
t h e  s u r f a c e  f o r c e  f i e l d  c r e a t e d  by t h e  w a i l s  t h e r e  w i l l  a c t  upon a gas  m o l e c u l e  a mean f o r c e  
<]FI>, which  by d e f i n i t i o n  (by Gibbs  a v e r a g i n g )  w i l l  e q u a l :  

Institute of Physical Chemistry, Academy of Sciences of the USSR, Moscow. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 47, No. I, pp. 82-87, duly, 1984. Original article 
submitted April 4, 1983. 

806 0022-0841/84/4701-0806508.50 �9 1985 Plenum Publishing Corporation 



y 

b 

Fig. i. Diagram of infinite capillary of radius rc; 
* represents a diffusing gas molecule. 
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It is clear that under the influence of the wall field the diffusion coefficient D will vary 
and depend on (IFI> It should be noted that the mean over time of gas molecule displacement 
along the capillary axis is equal to zero, but the mean square of the displacement, on which 
D is dependent, is not equal to zero. 

The problem of calculating the diffusion coefficient from molecule data, according to 
Eq. (i), reduces to finding p(T) and defining the system characteristic time To. From 
physical considerations, for To we may take the time corresponding to change in the direc- 
tion of a molecule's motion due to interaction with the wall. To determine this we turn to 
the well-known linear response theory of [3], which is widely used in statistical thermo- 
dynamics. According to this theory the diffusion coefficient can be expressed in terms of 
the velocity autocorrelation function A(T): 

oo 

D = < v (t + z). v if) > d'~ ~ ( A (T) dr. 
0 

Application of the generalized virial theorem 

< r(~)(t)., (~+~ (t) > = / 0 
I(- I) ~ < r(~ +~): ~t) > 

if n is odd, 

if lZ = 2~(~ ---- 1, 2, . . . )  

to expansions in a Taylor series in powers of T of the correlators v(t-? ~).v(l) and 
{r (t ~- G - -  r (/)) 2 gives [4] 

(3) 

A(T)---- ~ ( -  1 /T  2i v2 1 <F z>z  ~- + 1 )-~ (4) 
" (20! < vti)2(t) > = ( > 2m z ~m-~ < F (l > z~,-- . . . ,  

i=0 

( - 1 /  T2i+ 2 

0 (T) = - . . .  (2i + 2 ) ~  ( r(i+l)~ ( t ) ) ,  (5) 

where  Vit(t) and r(0(t) a r e  t h e  i - t h  d e r i v a t i v e s  w i t h  r e s p e c t  to  t ime o f  t h e  m o l e c u l a r  v e l o c i t y  
and d i s p l a c e m e n t .  As i s  e v i d e n t  f rom e x p a n s i o n s  ( 4 ) ,  ( 5 ) ,  A(z)  and P(~) a r e  f u n c t i o n s  o f  t h e  
mean s q u a r e  o f  t he  f o r c e  <F 2> and i t s  d e r i v a t i v e s .  

In  t he  s t u d y  o f  m a s s - t r a n s f e r  phenomena one i s  u s u a l l y  i n t e r e s t e d  i n  t h e  l o n g i t u d i n a l  
component  of  t he  d i f f u s i o n  c o e f f i c i e n t  Dz, a l o n g  the  c a p i l l a r y  a x i s ,  This  s i m p l i f i e s  t he  
p rob lem,  s i n c e  i n  t h i s  c a s e  i n  Eq. (1) the  l o n g i t u d i n a l  component pz (~)  a p p e a r s .  S ince  i n  

t JU \ the longitudinal direction the force and its derivatives are equal to zero Fz ..... 0 | ,  
0z / 

in Eq. (5) only the first term <v~2/2 will be nonzero. 
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Fig. 2. Form of autocorre- 
lation function A(x) for 
diffusing gas molecule. 

To make an estimate of To we will use the following assumptions: a) gas molecule dif- 
fusion in the strong adsorption field of the capillary walls is similar to particle motion 
in dense gases and condensed media, in the sense that in very narrow pores the distance be- 
tween a gas molecule and the wall will be of the same order of magnitude as the intermolecu- 
lar distances in such systems; b) the autocorrelation function of the gas molecule velocity 
in the adsorption field has an oscillating form, or at least one zero value, corresponding 
to a change in the sign of molecular velocity, i.e., a turning point; the characteristic 
form of the function A(x) is shown in Fig. 2; c) in the system under consideration the char- 
acteristic time interval is the time Xo, which defines the transverse force, since inter- 
action with the walls is the only cause of change in the direction of molecular motion. 

Commencing from point b), to determine To we use expansion (4), limiting ourselves to 
the first two terms, which is equivalent to a parabolic approximation of the function A(x) 
(the dashed curve of Fig. 2) to find the smallest root A(x) = O. The To value obtained in 
this manner is smaller than the true value of the root. Then expansion (4), according to 
point c), must be considered in a plane perpendicular to the capillary axis. We will con- 
sider expansion (4) for the system under study in a plane (x, y), perpendicular to the 
capillary axis, with origin on the axis (Fig. ib): 

v2 + v~ > 1 2 2 
x ~ - -  2----~ z < F x + F  u > ~ 2 = O .  (6)  

' =/[--) " ~ < f  ~> we obtain from Eq. (6) Inasmuch as ( ff~x + v; > = 2kT/m, while < F 2x+Fu >,~ \I/0ROU \2/ , 

/ 4 k T m  / "  4 k T m  

\kT#) / 

(7) 

Substituting P,(T)=<v2>x~ IO and Eq. (7) in Eq. (i), we have Z U I 

O ~  (kT)a/2 
V'm < F 2 > (8)  

Applying the tools of differential geometry [5], we can write an equation relating the 
square of the force to the trajectory parameters, i.e., the curvature ~ and the change in 
kinetic energy K along the arc trajectory s: 

== ( + (9) 
�9 \ d s  ) 

From this we have a simple kinematic image: the values of (F(R)) z in Eq. (9) characterize 
the changes in molecular velocity along the trajectory and the change in trajectory curva- 
ture under the action of the surface force field. The greater the force acting, the more 
curved is the trajectory and the more it deviates from linearity, thus leading to reduction 
of the diffusion coefficient. 

Consideration of a concrete problem -- diffusion of rarefield gas molecules (with X >I 
rc, where X is the free path length) in infinite microcapillaries with the aid of Eq. (8) 
has allowed derivation of the principles of D z behavior with change in temperature T and 
capillary radius r c. It develops that in the capillary wall adsorption field D z is propor- 
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tional to T in the range of temperatures comparable to the depth of the intermolecular inter- 
action potential well ~, while the function Dz(rc) is of an extremal character: at r c ~- 
i.io the curve has a maximum [i]. 

It is natural and necessary to consider the question of whether under conditions where 
the attractive component of the gas interaction potential with the capillary wall can be 
neglected, Eq. (8) will transform to the well-known expression for the Knudsen diffusion 

4 
--~/~kT1 Such a transformation can be expected for kT/e >> i, coefficient [6]: Dc: -~ V ~t-~ c 

rc/O >> i. 

Since transverse motion of the gas molecule in the capillary is limited, the mean over 
time 

/d 
"-dr (R.v~)>=<v,{>+..1 <(R.F)>=O, 

nz 

where v R is the radial component of the molecular velocity. Hence the virial ((R.F)> = 
- - m  < v~ ) .... kT. Under the conditions kT/e >) i, rc/o ~-~ 1 the major contribution to the 
mean will be produced by terms from the repulsive component of the system potential U and it 

/\ 
can be assumed that JR[~:c--~ Then <(R.F)> : <]R].IFI .<cosR.F)---~(r e-~)<[Fl> =--kT since 
R and F are collinear, i.e., we obtain <[FI>~-----kT/(%--o) �9 The quantity <iFI> can be 
estimated in a simpler manner: in the absence of a surface force field the change in direc- 
tion of gas molecule motion v R due to interaction with the wall is equivalent to the action 
of some mean force < IF 1 >, which acts from the wall at c a a distance of the order of ~ and is 

not a function of R. Thereforewemaywrltethat U-~ ! <IF[>dR=--kT, whence <IF[>= 

--kT/(rc--O ) Assuming that <F2>~<lF1> z and substituting the value of <I#]> in Eq. (8), 
we obtain 

_ /kT 
D~ _~ [/ --~-- (r c- ~). (i0) 

Considering that for wide capillaries r c ~ o, we have 

D z ~ / r ~ r c  (Ii) 

To the accuracy of a numerical factor of 1.06 this expression coincides with the Knudsen 

diffusion coefficient. 

Thus, the asymptotic study of Eq. (8) confirms the validity of the approach used in 
the present study. Equation (8) encompasses the entire temperature range and a widerange 
of capillary radii, including the Knudsen diffusion range. 

NOTATION 

0, mean-squared displacement; t, Y, time; D, Diffusion coefficient; r, displacement; m, 
mass; v, velocity; k, Boltzmann constant; T, absolute temperature; r c, capillary radius; u, 
intermolecular potential; e, maximum attraction energy of molecules; G, distance at which the 
molecular potential is equal to zero; U~ system potential; F, force; R, distance between a 
molecule and capillary axis; A, autocorrelatlon velocity function; F (i), force derivatives; 

z, trajectory; K, kinetic energy. 
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